KYOCERA AVX

KYOCERA AVX

KYOCERA AVX is a leading manufacturer of electronic components, specializing in ceramic capacitors, connectors, and filters. With a history dating back to 1972, KYOCERA AVX has become a trusted name in the electronics industry, known for their high-performance products and exceptional customer service. The company's product portfolio includes a wide range of passive electronic components designed to meet the specific needs of various industries, including automotive, aerospace, and telecommunications. KYOCERA AVX's state-of-the-art facilities, advanced technologies, and skilled workforce enable them to deliver customized solutions with exceptional accuracy and reliability. The company is committed to sustainability, using eco-friendly materials and production methods to minimize their impact on the environment. Through continuous innovation and a customer-centric approach, KYOCERA AVX continues to drive progress in the field of electronic components, providing cutting-edge products designed to meet the evolving needs of modern industries.

Monolithic Crystals

Results:
Results remaining0
Applied Filters:
KYOCERA AVX
Select
ImageProduct DetailPriceAvailabilityECAD Model
No data

About  Monolithic Crystals

Monolithic crystal filter (MCF) products play a crucial role in radio and related applications by serving as bandpass filters. These filters are closely related to quartz crystal resonators, which are commonly used for frequency generation. MCF filters leverage the piezoelectric and mechanical resonance properties of quartz material to achieve exceptional selectivity while maintaining a compact form factor. The fundamental principle behind MCF filters lies in the unique properties of quartz crystals. Quartz exhibits piezoelectricity, meaning it can generate an electric charge when subjected to mechanical stress or vibration. Furthermore, quartz crystals have inherent mechanical resonance frequencies that depend on their size and shape. To construct an MCF, a quartz crystal is cut and shaped into a specific geometry that allows it to vibrate at a desired resonant frequency. The crystal is then placed within an electrical circuit to create a bandpass filter. As an input signal passes through the MCF, only frequencies within a narrow range, centered around the crystal's resonant frequency, are allowed to pass through while attenuating signals outside this range. The design of MCF filters enables them to achieve extremely high selectivity, effectively isolating the desired frequency band from unwanted interference or noise. This exceptional selectivity is essential in applications where precise frequency control and signal purity are critical, such as in radio receivers, transceivers, and communication systems. One significant advantage of MCF filters is their compact package. By exploiting the properties of quartz crystals, these filters can be built in small form factors, making them suitable for integration into space-constrained devices and circuits. In summary, MCF filters are vital components used in radio and related applications as bandpass filters. By capitalizing on the piezoelectric and mechanical resonance properties of quartz material, these filters provide excellent selectivity in a compact package. Their ability to isolate specific frequency bands makes them indispensable for achieving accurate frequency control and maintaining signal purity in various electronic systems.