Microchip Technology

Microchip Technology

Micron Technology is a global leader in the development and manufacturing of advanced memory and storage solutions. The company's products include DRAM, NAND Flash, and NOR Flash memory, which are used in a wide range of applications, such as smartphones, computers, servers, automotive systems, and IoT devices. Micron's innovative technologies provide high-performance, energy-efficient, and reliable solutions for data-intensive applications. The company's commitment to research and development has led to numerous technological breakthroughs, including the world's first 176-layer 3D NAND Flash memory. Micron is also dedicated to sustainability, implementing eco-friendly practices in its manufacturing processes and promoting responsible sourcing of raw materials. With a focus on quality, innovation, and customer satisfaction, Micron Technology continues to be a trusted partner for businesses seeking cutting-edge memory and storage solutions.

Thermoelectric, Peltier Modules

Results:
Results remaining0
Applied Filters:
Microchip Technology
Select
ImageProduct DetailPriceAvailabilityECAD Model
No data

About  Thermoelectric, Peltier Modules

Thermoelectric modules, also known as Peltier modules, are specialized devices that utilize the Peltier effect to facilitate thermal transfer. These modules consist of two ceramic substrates with a junction in between. When an electric current is passed through the junction, heat is generated on one side while being absorbed on the other side. To effectively manage the heat generated, it is recommended to use a heatsink on the hot side of the module. The heatsink helps dissipate the excess heat and maintain optimal operating temperatures. The characteristics of thermoelectric modules include: Qmax @ Th: This refers to the maximum amount of heat that can be transferred by the module when the temperature at the hot side (Th) is maintained within specified limits. Delta Tmax @ Th: It represents the maximum temperature difference that can be achieved between the hot side and the cold side of the module when the temperature at the hot side (Th) is maintained within specified limits. Current max: This indicates the maximum current that the module can handle without experiencing any adverse effects or performance degradation. Voltage max: It denotes the maximum voltage that can be applied to the module without causing any damage or compromising its functionality. Resistance: This parameter relates to the electrical resistance exhibited by the module, which affects the efficiency and performance of the device. Operating temperature: It specifies the temperature range within which the module can function reliably and maintain its desired performance characteristics. By considering these characteristics, engineers and designers can select the appropriate thermoelectric modules for their specific thermal management requirements. These modules find applications in various industries, including electronics, telecommunications, automotive, aerospace, and medical, where precise temperature control and thermal regulation are crucial.