DIACs, SIDACs

Results:
315
Manufacturer
Series
Voltage - Breakover
Supplier Device Package
Package / Case
Operating Temperature
Current - Breakover
Current - Hold (Ih) (Max)
Current - Peak Output
Results remaining315
Select
ImageProduct DetailPriceAvailabilityECAD ModelSeriesSupplier Device PackageOperating TemperatureVoltage - BreakoverCurrent - BreakoverCurrent - Hold (Ih) (Max)Current - Peak OutputPackage / Case
K2500E70RP2
SIDAC 240-280V 1A TO92
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
TO-92
-40°C ~ 125°C (TJ)
240 ~ 280V
10 µA
150 mA
1 A
TO-226-2, TO-92-2 (TO-226AC) (Formed Leads)
K2000SHRP
SIDAC 190-215V 1A DO214
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-214
-40°C ~ 125°C (TJ)
190 ~ 215V
50 µA
150 mA
1 A
DO-214AA, SMB
K2000GHRP
SIDAC 190-215V 1A DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-15
-40°C ~ 125°C (TJ)
190 ~ 215V
50 µA
150 mA
1 A
DO-204AC, DO-15, Axial
K2000GHAP
SIDAC 190-215V 1A DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-15
-40°C ~ 125°C (TJ)
190 ~ 215V
50 µA
150 mA
1 A
DO-204AC, DO-15, Axial
K2000EH70
SIDAC 190-215V 1A TO92
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
TO-92
-40°C ~ 125°C (TJ)
190 ~ 215V
50 µA
150 mA
1 A
TO-226-2, TO-92-2 (TO-226AC)
K2500GRP
SIDAC 240-280V 1A DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-15
-40°C ~ 125°C (TJ)
240 ~ 280V
10 µA
150 mA
1 A
DO-204AC, DO-15, Axial
K2300GRP
SIDAC 230V DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-204AC (DO-15)
-40°C ~ 150°C (TJ)
220 ~ 240V
10 µA
80 mA
1 A
DO-204AC, DO-15, Axial
K2400GAP
SIDAC 220-250V 1A DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-15
-40°C ~ 125°C (TJ)
220 ~ 250V
10 µA
150 mA
1 A
DO-204AC, DO-15, Axial
K2300G
SIDAC 230V DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-204AC (DO-15)
-40°C ~ 150°C (TJ)
220 ~ 240V
10 µA
80 mA
1 A
DO-204AC, DO-15, Axial
K2000GRP
SIDAC 190-215V 1A DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-15
-40°C ~ 125°C (TJ)
190 ~ 215V
10 µA
150 mA
1 A
DO-204AC, DO-15, Axial
K1400GRP
SIDAC 130-146V 1A DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-15
-40°C ~ 125°C (TJ)
130 ~ 146V
10 µA
150 mA
1 A
DO-204AC, DO-15, Axial
K2300SRP
SIDAC 230V DO214 2L
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-214AA
-40°C ~ 150°C (TJ)
220 ~ 240V
10 µA
80 mA
1 A
DO-214AA, SMB
K2300GAP
SIDAC 230V DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-204AC (DO-15)
-40°C ~ 150°C (TJ)
220 ~ 240V
10 µA
80 mA
1 A
DO-204AC, DO-15, Axial
K2000GAP
SIDAC 190-215V 1A DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-15
-40°C ~ 125°C (TJ)
190 ~ 215V
10 µA
150 mA
1 A
DO-204AC, DO-15, Axial
K2500E70AP
SIDAC 240-280V 1A TO92
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
TO-92
-40°C ~ 125°C (TJ)
240 ~ 280V
10 µA
150 mA
1 A
TO-226-2, TO-92-2 (TO-226AC) (Formed Leads)
K2200GAP
SIDAC 205-230V 1A DO15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-15
-40°C ~ 125°C (TJ)
205 ~ 230V
10 µA
150 mA
1 A
DO-204AC, DO-15, Axial
K1800GURP
SIDAC 180V DO-15
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-204AC (DO-15)
-40°C ~ 125°C (TJ)
167 ~ 183V
10 µA
80 mA
1 A
DO-204AC, DO-15, Axial
K2500S1URP
SIDAC UNI 240-260V 1A DO214AC
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
DO-214AC (SMA)
-40°C ~ 150°C (TJ)
240 ~ 260V
10 µA
80 mA
1 A
DO-214AC, SMA
K2000E70RP2
SIDAC 190-215V 1A TO92
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
TO-92
-40°C ~ 125°C (TJ)
190 ~ 215V
10 µA
150 mA
1 A
TO-226-2, TO-92-2 (TO-226AC) (Formed Leads)
K2000E70RP3
SIDAC 190-215V 1A TO92
Contact us
Quantity
Contact us
PCB Symbol, Footprint & 3D Model
-
TO-92
-40°C ~ 125°C (TJ)
190 ~ 215V
10 µA
150 mA
1 A
TO-226-2, TO-92-2 (TO-226AC) (Formed Leads)

DIACs, SIDACs

DIAC and SIDAC devices belong to a family of two-terminal components that find widespread use as triggering mechanisms in AC phase control applications. Their primary function is to regulate the flow of current until a specific voltage threshold is reached, at which point they allow a significant increase in current flow. The key distinction between DIACs (Diodes for Alternating Current) and SIDACs (Silicon Diode for Alternating Current) lies in their characteristic curves. DIACs typically exhibit higher forward voltages in their conductive mode compared to SIDACs. As a result, when applications require substantial current flow, SIDACs are generally more suitable due to their lower forward voltage drop. In AC phase control applications, these devices play a critical role in achieving precise control over the flow of alternating current. By serving as triggering mechanisms, DIACs and SIDACs enable the regulation of power levels and facilitate the proper functioning of electronic circuits. It is important to select the appropriate device based on the specific requirements of the application. If the application demands higher current flow, SIDACs are generally preferred due to their lower forward voltage drop. However, if the application allows for higher forward voltages, DIACs can also be used effectively. In summary, DIACs and SIDACs are two-terminal devices commonly used as triggering mechanisms in AC phase control applications. They regulate current flow until a specific voltage threshold is reached. While DIACs exhibit higher forward voltages in their conductive mode, making them less suitable for high-current applications, SIDACs offer a lower forward voltage drop, making them more favorable in such scenarios. Proper selection between DIACs and SIDACs is crucial for achieving optimal performance in AC phase control applications.