Weidmuller

Weidmuller

Weidmuller is a renowned global manufacturer of electrical connectivity, automation, and digitalization solutions. With a history dating back to 1850, Weidmuller has become a trusted partner for industries such as machinery manufacturing, process industries, and energy. The company offers a wide range of products, including terminal blocks, industrial connectors, surge protection devices, and automation components. Weidmuller's products are known for their reliability, quality, and innovative design, meeting the demanding requirements of industrial applications. The company also provides comprehensive solutions for data analytics and digitalization, enabling businesses to optimize their processes and improve efficiency. With a commitment to sustainability, Weidmuller focuses on developing energy-efficient products and reducing environmental impact. Through its global presence and customer-centric approach, Weidmuller continues to deliver cutting-edge solutions that empower industries in the era of digital transformation.

Thyristors

Results:
Results remaining0
Applied Filters:
Weidmuller
Select
ImageProduct DetailPriceAvailabilityECAD Model
No data

About  Thyristors

Thyristors are semiconductor devices commonly used in Transient Voltage Suppression (TVS) applications to protect electronic systems from voltage surges or transients. They are specifically designed to provide over-voltage protection by acting as a switch that can rapidly respond to high voltage events. Thyristors have three main states of operation: off-state, on-state, and latching state. In the off-state, the thyristor acts as an open circuit and allows normal current flow in the system. When a voltage surge occurs and exceeds a specific threshold called the breakover voltage, the thyristor enters the on-state. In this state, it behaves like a short circuit, diverting excess current away from sensitive components and protecting them from potential damage. The thyristor remains in the on-state until the current flowing through it drops below a certain level known as the hold current. This drop in current can be triggered by external factors such as a decrease in the transient voltage or the presence of other components in the circuit. Once the hold current is reached, the thyristor returns to the off-state, ready to protect the system against future voltage surges. Thyristors used in TVS applications are designed to handle high surge currents and fast response times, making them suitable for protecting sensitive electronic equipment. They can provide effective protection against various types of transient events, including lightning strikes, electrostatic discharge, and switching noise. Thyristor-based TVS devices are commonly used in a wide range of applications, including power supplies, telecommunications equipment, industrial machinery, automotive electronics, and more. They are reliable and robust devices that help prevent damage to electronic systems caused by voltage surges, ensuring the smooth operation and longevity of the protected equipment. In summary, thyristors are semiconductor devices utilized in TVS applications to protect electronic systems from voltage surges. They function as switches, rapidly transitioning between open and short circuit states in response to over-voltage events. Thyristors offer high surge current handling capabilities and fast response times, making them an effective solution for safeguarding sensitive electronic equipment from transient voltage spikes.